SCIENTIFIC CALCULATOR

(ELECTRONIC CALCULATOR LIMITED WARRANTY:

SHARP ELECTRONICS CORPORATION warrants this product to the original purchaser to be free from defective materials and
 booklet supplied with your unit.
This warranty does not apply to any appearance items nor to any product whose exterior has been damaged or defaced, nor to any product subjected to misuse, abno
UMER FACTORY SERVICE CENTER. This warranty does not apply to any territories, or possessions.
The period of this warranty covers one (1) year on parts and one (1) year on labor from date of purchase.
This warranty entitles the original purchaser to have the warranted parts and labor rendered at no cost for the period of the This warranty entitles the original purchaser
warranty described above when the unit is carried or shipped, prepaid, to a SHARP CONSUMER FACTORY SERVICE CENTER warranty described above when
together with proof of purchase.
this shall be the exclusive written warranty of the original purchaser and neither this WARRANTY NOR ANY OTHER WARRANTY, EXPRESSED OR IMPLIED, SHALL EXTEND BEYOND THE PERIOD OF THE TIME LISTED ABOVE. IN NO EVENT SHALL SHARP BE LIABLE FOR CONSEQUENTIAL ECONOMIC DAMAGE OR CON SEQUENTIAL DAMAGE TO PROPERTY. SOME STATES DO NOT ALLOW A LIMITATION ON HOW LONG AN IMPLIED WARRANTY LASTS OR AN EXCLUSION OF CONSEQUENTIAL DAMAGE, SO THE ABOVE LIMITATION AND EXCLU ION MAY NOT APPLY TO YOU. IN ADDITION, THIS WARRANTY GIVES SPECIFIC LEGAL RIGHTS, AND YOU MAY HAVE OTHER RIGHTS WHICH VARY FROM STATE TO STATE

GONTENTS

NTRODUCTION 4
PPERATIONAL NOTES 6
FEATURES 10
NORMAL CALCULATIONS11

1. Addition, Subtraction 13
2. Multiplication, Division 14
3. Use of parenthesis 19
Priority level 20
4. Memory Calcula 20
5. Second Function 22
6. Scientific Notation
Decimal Places.

INTRODUCTION

Congratulation on your purchase of the SHARP scientific calculator, model EL-512.
This manual will introduce you to the Sharp EL-512 scientific calculator.
Some sections in this manual may be divided into basic and advanced material. The advanced material is labeled "supplementary." The supplementary sections may be skipped without hampering your ability to operate the calculator. You may wish to return to the supplementary sections as your skill in operating the EL-512 increases.

OPERATIONAL NOTES

Since the liquid crystal display is made of glass material, treat the calculator with care. Do not put your "EL-512" in your back pocket as it may be damaged when you sit down.

To insure trouble-free operation of your SHARP calculator, we recommend the following: 1. The calculator should be kept in areas free from extreme temperature changes, moisture and dust.
During warm weather, vehicles left in direct sun light are subject to high temperature build up.
Prolonged exposure to high temperature may cause damage to your calculator.
2. A soft, dry cloth should be used to clean the calculator. Do not use solvents or a wet cloth.
3. If the calculator will not be operated for an extended period of time, remove the batteries to avoid possible damage caused by battery leakage.
4. If service of your calculator is required, use only an authorized SHARP service center. 5. Keep this manual for further reference.

FEATURES

1) Direct Formula Entry

- Direct formula entry for entering formulas as they are written with no need for translation into machine language.

```
Example
```



```
3 =
```

- 15 levels of parentheses and 8 levels of pending operation.

2) Multi Formula Reserve

- Four kinds of formulas can be stored into the formula reserve memory by the LEARN mode.
Maximum capacity of the memory is 128 steps.

3) Multiple Storage Memories

- Nine storage memories for storing constants and results.
- Independently accessible 3-key memory with $x+m$, $\mathbb{R M}$ and $\times\left(M+k^{2}\right.$ keys.

4) Hexadecimal \leftrightarrow Decimal notation conversions

Hexadecimal notation system is mainly used in computer programming. Computer engineers and programmers have been in urgent need for a simple conversion of decimal and hexadecimal notations.
Now, EL-512 has solved the problem. Simply enter a number in base 16 or 10, the EL-512 will then give you the answer instantly.
5) Double-variable statistical function and linear regression

NORMAL CALCULATIONS

TURNING THE POWER ON

POWER ON OFF C.CE

To turn the power on press the red [c.cs key. To turn the power off press the off key Sharp calculator has the A.P.O. (Automatic Power OFF). If the calculator is turned on in error, or no calculation is performed, the calculator will turn itself off after about nine minutes, saving battery power. To turn the EL-512 back on press the [.CEE key.
To floating decimal system, depress the 2 ndF $T \mathrm{TAB}$ and \square keys.
(Details, see "Decimal Places")

Clearing

[.CE , \Rightarrow

An incorrectly entered number can be replaced as long as the number has not already been followed by a "function key."
For example:
Key in: 5 x 4 (The 4 should be 6)
Key in: 6
Answer: 30
 calculator will be completely cleared except for material in memory. All previous calculations will be cleared if the c.cE key is pressed after a function key.
In case of one digit correction of the entered number, use the right shift key.
Key in: $123+12345687$ (The 87 should be 78)
Key in: $\quad \rightarrow \quad 78=$
Answer: 12345801
BASIC FUNCTIONS AND THE EQUALS KEY
$\pm \square X \div$ Addition, Subtraction, Multiplication, Division, Equals

1. Addition, Subtraction

$$
\begin{aligned}
& \text { Key in: } 123 \text { + } 456 \text { A } 789 \text { Answer: } 1368 \\
& \text { Key in: } 100-25-35=\text { Answer: } 40
\end{aligned}
$$

Pressing the $=$ key gives the answer to the entered formula.
Using a constant:
The calculator is equipped with a built-in constant feature which allows repetitive calculations (calculating with the same number without having to re-enter that number and the function key).
Key in: $10 \pm 20 \pm$
20 is now a constant for further additions:
Key in: $60=$

Some calculations require slightly longer time depending on the contents. If nothing appears on the display during calculation do not continue making entries.

To use the sum of numbers as a constant use \square and 1 keys. Key in: $10 \pm \square 20 \pm 5 \square 1=$ Answer: 35 Key in: $4=$ Answer: 29 Key in: $100-25=$ Answer: 75 Key in: $40=$ Answer: 15 Key in: $50=\square 10 \square 12 \square \square 12$ Key in: 20 =
2. Multiplication, Division

Calculate: $50 \times(-2) \div 4$
Key in: $50 \times 2=4=$
Note: To enter a negative number, press the \square key after numerals. Answer: -25

Calculate: $5+2 \times 3-2 \div 0.5$
Key in: $5+2 \times 2 \square 2 \square$
Answer: 7

Note that multiplication and division have priority to addition and subtraction. In other words multiplication and division will occur before addition and subtraction.
Constant Multiplication: The first number entered is the multiplicand.
$\begin{array}{ll}\text { Key in: } & 3 \quad 5 \\ \text { Key in: } & 10 \equiv\end{array}$
Answer: 15

Constant Division: The number entered after the division sign is the divisor.
Key in: $15 \div 3 \square$
Answer: 5
Key in: $30 \equiv$
Answer:
10

Note: The machine retains some calculations depending on priority level.
Accordingly, in successive calculation the operator of the last calculation and the last numerical value are handled as a calculating instruction and a constant for constant calculation, respectively.
$a+b \times c=$
$+b c$
$a \times b \div c=$
(Constant addition)
$a \times b-c=$
$\frac{a}{b} x$
(Constant multiplication)
(Constant subtraction
3. Use of parenthesis

The parentheses keys are needed to cluster together a series of operations when it is necessary to override the priority system of algebra. When parentheses are in use on the EL-512 the symbol () will appear in the display.
Calculations in parentheses have priority over other calculations. Parentheses can be used up to 15 times in a single level. Calculations within the inner-most set of parentheses will be calculated first.
Calculate: $12+42 \div(8-6)$
Key in: $12 \square 42 \div \square 8 \square \square \square$
Answer: 33
Calculate: $126 \div[(3+4) \times(3-1)]$
Key in: $126 \div \square \square 1+$
Answer: 9
Note: The 1 keys located just before the Ξ key can be omitted.

Supplementary 1 - priority level

Ex. Koy operation and sequence of calculation in $5+2 \times \sin 30+24 \times 5^{3}=$

The machine, provided with a function that judges the priority level of individual calcula tions, permits keys to be operated according to a given mathematical farmula. The following shows the priority level of individual calculations.

Level

(1)

Operations

Single-variable functions which are calculated as entered like $\sin , \ln , 10^{x}$ $1 / x, x^{2}$.

- Multiplication cleared of " x " instruction located just before storage memory or π. (such as $2 \pi, 4 \mathrm{~K}_{1}$) memory or π. (such as $2 \pi, 4 K_{1}$)
Multiplication cleared of " x " instruction located just before the "(" loper parenthesis).
$y^{x}, \sqrt[x]{y}$
x, \div (Calculations which are given the same priority level are executed if +, - sequence.)
$=, \mathrm{M}+$

When calculations are executed from higher priority one in sequence a lower priority one must be reserved. The machine is provided with memories of eight levels to meet such requirement.
As the memories can be also used in a calculation including parentheses, calculation can be performed according to a given mathematical formula unless parentheses and pending operation exceed 8 levels in total.

- Single-variable functions are calculated immediately after key operation without being retained. $\left(x^{2}, 1 / x, n!, \rightarrow D E G \rightarrow D \cdot M S\right.$, etc. $)$

〈Calculation without using parentheses〉
Ex.
Pending of 1 level

(Calculation using parentheses)

- A multiplication with " x " immediately before "(" omitted becomes higher in priority 4. Memory Calculations
level than $y^{x}, \sqrt[x]{y}, x$ and \div
Its calculation is performed first, differing from the calculation of a multiplication with " x " included.
Ex. $\int 2 \div 5 \square 12+\frac{2}{5 \times(2+3)}=\frac{2}{25}=0.08$ $\left\{\begin{array}{lll}2 \square \square & \div x & \square \\ x & \rightarrow & \frac{2}{5} \times(2+3)=\frac{2}{5} \times 5=2\end{array}\right.$

$$
\begin{aligned}
& 2 \div 3 \square 12 \square y^{x} \div 5 \rightarrow \frac{2}{(3 \times(2+3))^{2}}=\frac{2}{15^{2}}=0.00888 \\
& 2 \div 3 \square x+1 \times y^{x} 2 \square \rightarrow \frac{2}{3} \times(2+3)^{2}=\frac{2}{3} \times 5^{2}=16.666
\end{aligned}
$$

The independently accessible memory is indicated by the three keys: $x \rightarrow \infty, ~ R M, ~ M+$ Before starting a calculation clear the memory by pressing $\quad \mathrm{c} \cdot \mathrm{CE}$ and $x \mathrm{~mm}$

Key in: $12 \pm 5=M$
 Answer: 17

\rightarrow To subtract key in: $2+5=\boxed{M+}$

Answer to this equation: -7
Key in RM to recall memory: 10
Key in: $12 x=x=x-m$
Answer: 24 (Replaces previous amount stored in memory with 24.)
Key in: $8 \div 2 \square M$
Answer: 4 RM : 28
Note: - Memory calculations are impossible in the Statistical calculation mode When subtracting a number from the memory, press the $\$$ and $M+$ keys.

- For storage memory, see "MULTIPLE STORAGE MEMORIES".

SCIENTIFIC CALCULATIONS

Press the 2ndF $\frac{T A B}{[F \omega E}$ and \square keys to calculate in the floating decimal system. (See "Decimal Places")

1. Second Function

EL-512 has many preprogrammed functions, but the space available on the keys tc display all the functions is limited. Most of the keys serve two functions: the firs function is displayed on the key itself, the second is printed above the key panel.
The yellow key in the upper left of the calculator marked " 2 nd F" must be used t designate a second function (The material appearing in brown above or below each keyl Example:
(1)

-The material appearing below each key is used at the statistica calculation mode.

$$
\begin{aligned}
& \text { Second function: Use the } \quad \text { 2ndrl key. (} 2 n d /{ }^{\square} \\
& \text { First function: Press the } \quad \square \text { key. }
\end{aligned}
$$

(2) $\longrightarrow r(B) \longleftarrow$ Right side: Hexadecimal number Press the [2ndf (B) keys at the normal calculation mode.
 Statistical calculation key
 Press the [2ndr r keys at the statistical calculation mode.

When the 2ndF $k e y$ is depressed, the designation "2nd F" will appear in the lower part of the display. If you press this key in error, press it a second time and the "2nd F" designation will disappear.

In this manual, we will always show key functions as follows;

2. Scientific Notation

Decimal Places
The 2ndF TAB keys are used to specify the number of decimal digits in the calculation result. The number of places after the decimal point is specified by the numeral key (0 ~ 9) pressed after the 2 nodr TAD keys. Carry over will be automatically rounded. For free floating calculation press the \square key after $2 \pi / T A B$. The designa tions of decimal places is retained even when the power is turned off

First Press 2 nuff TAB $\cdot \square \quad$ Key in C.CE $1.23456789 \quad$ E
Display reads 1.23456789
Press 2ndf TAB 3 , display reads 1.235
Press 2 natf TAB 7 , display reads 1.2345679
Calculate $1.2 \times 10^{-12} \times 4.5 \times 10^{-10}$

Answer: 5.4-22
If you wish to place a number into the calculator in scientific notation you must use th
EXP key. If you wish to convert from floating decimal to scientific notation, you mus use the key [FoE]

Calculate $1.2 \times 10^{20} \times 1.5 \times 10^{5}$
Key in: 1.2 EXP $20 \times x$ EXP $5 \equiv$
Answer: $1.8 \quad 25\left(1.8 \times 10^{25}\right)$
Calculate $1.992 \times 10^{33} \times 6.668 \times 10^{-23}$
Key in: 1.992 EXP $33 \times x$ $x .668$ EXP 23 (+ E

Answer: $1.328265611\left(1.3282656 \times 10^{11}\right)$

If a calculation is displayed in the floating decimal point system, pushing the Fare key displays the result in scientific notation. Pushing the key again displays the result in the floating decimal point system.
Key in: c.ce 1234567898 E
Display reads: 1234567898.
Press Fame Display reads 1.234567809
Press F \sim E \quad Display reads 1234567898.
3. Trigonometric functions

The angular mode is designated by the 2ndra The angular mode is designated by the 2 keys. As you press these keys the mode "DEG", "RAD", "GRAD" will appear at the lower part of the display.

Put the angular mode at "DEG".
Calculate: $\quad \operatorname{Sin} 30^{\circ}+\operatorname{Cos} 40^{\circ}$
Key in the following: 30 sin $+40 \cos \square$ Answer: 1.266044443
Calculate: $\operatorname{Cos} 0.25 \pi$
Put the angular mode at "RAD"
Key in: $\quad .25 x \cos$ Answer: 0.707106781
4. Inverse Trigonometric Functions

Calculate: $\operatorname{Sin}^{-1} 0.5$
Put the angular mode at "DEG".
Key in: $\quad .5$ 2ndF sin

Answer: 30

Calculate: $\quad \operatorname{Cos}^{-1}-1$
Put the angular mode at "RAD". (To enter a negative number, press the
Key in:
1 t+ [20nt [ace key after numerals.
5. Hyperbolic and Inverse Hyperbolic Functions

When using the hyperbolic and arc hyperbolic functions "HYP" will appear in the lower part of the display.

Calculate: Sinh 4

Key in: 4 hyp sin
Answer: 27.2899172
Calculate: $\operatorname{Sinh}^{-1} 9$
Key in:
9 2nd
archyp sin
Answer: 2.893443986
6. Power Functions

Calculate: $\quad 20^{2}$
Key in: $20 x^{2}$
Answer: 400
Calculate: 3^{3} and 3^{4}
Key in: $\quad 3 y^{x} 3=$ Answer: 27

7. Roots

Calculate: $\sqrt{25}$
Key in: $25 \sqrt{5}$ Answer: 5
Calculate: Cube root of 27
Key in: 27 2ndr $3 \sqrt{2}$
Answer:
3
Calculate fourth root of 81
Key in: 81 [2nd $x \sqrt{x \sqrt{y}} 4=$
Answer: 3
8. Logarithmic Functions

Calculate: $\ln 21, \log 173$
Natural Logarithms: Key in: 21 In
Answer: 3.044522438
Common Logarithms: Key in: 173 log
Answer: 2.238046103
9. Exponential Functions

Calculate: $e^{3.0445}$
Key in: $\quad 3.0445$ 2ndF e^{x}
Answer: 20.99952881 (21 as in item " 8 " above)
Calculate: $10^{2.238}$
Key in: $\quad 2.238$ 2nary 10^{x}
Answer: 172.9816359 (173 as in item ' 8 ' above)
0. Reciprocals

Calculate: $\quad 1 / 6+1 / 7$
Key in: 6 2ndr $1 / x,+7$ 2ndF $1 / x=$ Answer: 0.30952381

1. Factorial

Calculate: 69!
Key in:
69 nnarl n!
Answer: $1.711224598\left(1.7112245 \times 10^{98}\right)$
Note that the Error section deals with the calculation limits of the calculator.
12. Angle/Time conversions

To convert an angle given as degrees/minutes/seconds to its decimal equivalent, it must be entered as integer and decimal respectively.

Convert $12^{\circ} 47^{\prime} 52^{\prime \prime}$ to its decimal equivalent
Key in: 12.4752 [DEG Answer: 12.79777778

When converting decimal degrees to the equivalent degrees/minutes/seconds, the answe is broken down: integer portion = degrees; 1 st and 2 nd decimal digits $=$ minutes; 3 r and 4 th digits $=$ seconds; and the 5 th through end decimal digits are decimal degrees.

Convert 24.7256 to its degree/minute/second equivalent
Key in: 24.7256 2ndir -oms

$$
\text { Answer: } \quad 24.433216 \text { or } 24^{\circ} 43^{\prime} 32^{\prime \prime}
$$

A horse has track times of 2 minutes 25 seconds, 2 minutes 38 seconds, and 2 minutet 22 seconds. What is the average running time?

Key in: . 0225 -DEG +.0238 PDEG +.0222 ODEG \equiv Answer 1: 0.123611111

Key in:	\div	$3=$
Answer $2:$	0.041203704	
Key in: 2ndr	-0ns	
Answer $3:$	0.022833333 or the average time is 2 minutes 28 seconds	

Calculate the magnitude and direction (phase) in a vector $\dot{I}=12+j 9$
Key in: 12 2ndf if 9 2ndF ero
Answer: 15 (r)
Key in: 2ndif

Converting polar coordinates to rectangular ($\mathrm{r}, \theta \rightarrow x, y$)
Solve for $P(14, \pi / 3), r=14 \quad \theta=\pi / 3$

Key in: 2ndF合 Answer:
12.12435565

In the above example $\theta=\frac{\pi}{3}$ is inputted first and is replaced with $r=14$ by pushing the 2nor to keys after r is inputted.
4. Hexadecimal \leftrightarrow decimal notation conversions

Hexadecimal system:

	0	1	2	3	4	5	6	7	8	9
Key in	0	1	2	3	4	5	6	7	8	9
Display	6	1	\square^{3}	g	4	5	5	7	9	9
H9wzot	10		11	12		13		14	15	
Key in	[2 Naf ((A)		[201F (1B)	[2 adf ((C)		2ndF (D $^{\text {I }}$		(2nate (E)]	[20dF (F)	
Display	,		B	1		d		5	F	

Example: Convert 123 to its hexadecimal equivalent
(1)

Key in: 123 2ndF HHEX
Answer: FIL! (The symbol "HEX" appears)

Press 2ndF -DEC, and " 123 " will be displayed
Convert 9 AF to its decimal equivalent
Key in: 9 [2ndf (AA) [2ndF (F) 2ndF $-D E C$ Answer: 2479
Calculate $\quad \mathrm{B} 2+3 \mathrm{C}=$
Key in: [2ndF [(B) $2+3$ 2ndF (C) $E \rightarrow 238$

(Hexadecimal answer)
Note: - In hexadecimal number calculation, only the number with through F can be used. (Ex. B2 +3 C Please note that any number without A through F is regarded decimal

- A hexadecimal number calculation is performed after convertin the entered number to decimal, and the decimal answer displayed.

Remarks: - Symbol "HEX":
The symbol "HEX" appears when a hexadecimal answer is displayed

- Non-operation:

1) In the following case, a conversion can not be performed and an error condition occurs.
When a number had a decimal and is not a zero in floating decimal system:

$$
\text { Ex. } 123.5 \text { 2ndr }-\mathrm{HEx}
$$

When a number exceeds 9999999999 :

$$
\text { Ex. } 3 \text { EXP } 10 \text { 2ndF } \text { HEx }
$$

2) The hexadecimal number (A through F) can not be entered in the following cases:
i) When the \square or EXP key is entered beforehand.
ii) When minus symbol is displayed.
iii) When the statistical calculation mode is set.
(An error occurs.)

- Convertion of negative number:

Decimal \rightarrow Hexadecimal
The EL-512 uses " 2 's complement" in the internal calculation an displays the results in 16's complement.

$$
\text { Ex. Key in: } 1 \text { t 2nd EHEx Answer: FFFFFFFFFF }
$$

Hexadecimal \rightarrow Decimal
When 16 's complement is converted to decimal, the answer is dis played in negative decimal number.

Ex. 2 Calculates the surface and the volume of the sphere.

$$
\mathrm{S}=4 \pi r^{2}, \quad \mathrm{~V}=\frac{4}{3} \pi r^{3}
$$

$$
\text { Radius } r=12 \mathrm{~cm}
$$

| 4 | x | x |
| :--- | :--- | :--- | :--- |
| \rightarrow | 1809557368 | |

$12\left[y^{x} 3 x\right] x$

$4 \div 3 \equiv \rightarrow 7238.229474$ (V)
15. Applications

Ex. 1 Base conversion of logarithm

$$
\log _{a} b=\frac{\log b}{\log a} \quad a=3, b=124
$$

$124 \log \div 3 \log \square$
$\rightarrow 4.387609364$

Ex. 3 Cosine theorem

MULTIPLE STORAGE MEMORIES

The EL-512 has 9 memories ($K_{1} \sim K_{9}$) for storing frequently used constants or results, an an independently accessible memory which has memory plus and memory minus (22 x M+1 function.
By Memory Safe Guard, turning the calculator on and off will not affect the material stort in the memory.

Memory $\mathrm{K}_{1} \sim \mathrm{~K}_{\mathbf{~}}$

To input a number into a memory press the value followed by 2 nodr STO Kn and th memory number. Addition or subtraction to a memory is not possible. To recall a vall from a memory press $[\mathbf{K n}$ and the appropriate memory number. (See Note below) To cle a memory press 0 2ndF $\mathrm{STO}_{\mathrm{Kn}} \mathrm{Kn}$ and the memory number.

Key in: $12 \times 5=2$ 2ndF STO $\mathrm{Kn} \quad 1$
Answer: 60 (Contents of Memory K_{1})
Note: The Kn key preceded by the STO key can be omitted.

Answer: 5 (Contents of Memory K_{2})

Key in:
Answer:
Key in:
Answer:
Note:

1) Pressing
c.CE Kn $1 \times \div \times \pi \times 2$
(In case the c.cce key is not used, the contents of the K_{1} memory is automatically multiplied by the displayed number " 5 " when the 1 key is
depressed.)
12 (Content
2 (Contents of Memory K_{3})
 3600

Pressing the $\mathrm{Kn} \quad 1 \sim \mathrm{Kn}, 9$ when the registered numerical value, the numerical value called from the memory or the calculation result (except for 0) is on display, causes multiplication to occur simultaneously between the numerical Auton display and inside the constant memory.
(Automatic multiplication)
Example: Press

$$
\begin{array}{lll|l}
20 & \text { 2ndF } & \text { STO } & 1 \\
15 & \text { Sndfl } & 5 T 0 & 2 \\
\hline \mathrm{Kn} & 1 & & \\
\hline 1 & &
\end{array}
$$

Note that when you key in the " 1 " your answer is 300
$+,-x, x, y^{x}$, $2 \pi \times \sqrt{x} \sqrt{y}$ A. Coulombis Law 1 or when the calculation result 0 is displayed, causes the memory contents be called.

Example
You may wish to store any of the following commonly used constants in K_{4} to K_{7}.
K_{4} Dielectric Constant of Vacuum
K_{5} Gas Constant
K_{6} Light Velocity of Vacuum
K_{7} Elementary Electric Charge

$$
\begin{aligned}
& \epsilon_{0}=8.85419 \times 10^{-12} \\
& \mathrm{R}=8.2054 \times 10^{-2} \\
& \mathrm{C}=2.99792 \times 10^{8} \\
& \mathrm{e}=1.60219 \times 10^{-19}
\end{aligned}
$$

For example: 8.85419 EXP 12 \#\% EndF STO 4

| 8.2054 | EXP | 2 | +ANAF | STO | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Each storage memory operates as a multiplier and storage memories can be automatical multiplied against each other.

Coulomb's Law

If you had stored ϵ_{0} in K_{4} you would calculate Coulomb's Law as follows:

$$
F=\frac{1}{4 \pi \epsilon_{0}} \cdot \frac{q_{1} \cdot q_{2}}{r^{2}} \quad q_{1}=1 c, q_{2}=3 c, r=4 m
$$

 Answer: 1685165545

Press FF FE : 1.685165509
B. Gas Equilibrium

If you had stored the gas constant (R) in K_{5}, you would calculate gas pressure as follows:

$$
\begin{array}{ll}
P V=n R T & T=300^{\circ} \mathrm{K}, \\
\mathrm{P}=0.5 \mathrm{~mol}, \mathrm{~V}=10 \mathrm{l} \\
. \quad \mathrm{x} 300 \mathrm{Kn} \quad 5 \quad \div 10 \quad \Xi \quad \text { Answer: } P=1.23081
\end{array}
$$

If you wished to convert liters to gallons and miles to kilometers on a regular basis, stor

STATISTICAL CALCULATION

the conversion factors as follows:
Liters to gallons:
264178 2nath sto 8
Miles to kilometers: 1.6093472 EndF STO 9

The EL-512 has single-variable and double-variable statistical functions, and linear regression function. The statistical mode is obtained by pressing 2ndF and STAT keys (above the \rightarrow key). In this case, while using statistics the symbol sidili will appear on the display. (When the symbol " LRND " is displayed, press End LRN keys, and then press

2 LRN k keys.)
I purchase 10 liters of gasoline and drive 60 miles. How many kilometers/gallon am getting?
$60 \mathrm{Kn} 9 \div 10 \mathrm{Kn} \quad 8 \equiv$

Set the mode by pressing indif STAT keys again.
keys again.
Note: Pressing the [DатA will clear the storage memories, K_{8} and K_{9}, as they are used for storing statistical results (n and Σx). The contents of the $\mathrm{n}\left(\mathrm{K}_{8}\right)$ and $\Sigma x\left(\mathrm{~K}_{9}\right)$ are retained even when the statistical calculation mode is reset.

1. One-variable statistical calculation

Calculates the following statistics.
(1) n : Number of samples
(2) Σx : Total of samples
(3) Σx^{2} : Sum of squares of samples

Mean value of samples $\bar{x}=\frac{\Sigma x}{n}$
(5) $s x$: Standard deviation with population parameter taken to be " $n-1$ ".
$\mathrm{s} x=\sqrt{\Sigma x^{2}-\mathrm{n} \bar{x}^{2}}$ (Used to estimate the standard deviation of popula tion from the sample data extracted from that population.)
(6) σx : Standard deviation with population parameter taken to be " n ".

(Used when all populations are taken to be sampl' data or when finding the standard deviation of population with sample taken to be a population.
Data for one-variable statistic calculations are inputted by the following operations
(1) Data Data
(2) Data
x Frequency(when two or more of the same data are inputted)

- When the statistical calculations mode is set, the followings can not be performed
i) Memory calculation with an independently accessible memory and storage memories K_{8} and K_{9}.
ii) Coordinate conversion
iii) Calculation including parenthesis.
iv) Hexadecimal \leftrightarrow decimal conversion
- The followings can be used as the input data in statistical calculation:
i) Entry number
ii) Calculated result of the functions which can be used in the chain calculation.

2. Single Variable Statistics

Calculates standard deviation, mean, and variance $(\mathrm{s} x)^{2}$ from the following data:

Value	35	45	55	65
Frequency	1	1	5	2

As each sample is entered the number of that sample will appear on the right hand side of the display.
Mode: STAT, Floating decimal point system

	Key in:		Display	
35	[Data]		1	
45	[0атA]		2	
55×5	[DATA		7	
65×2	[DATA]		9	
		Kev in:		Display:
Mean:		2ndel \bar{x}		53.88888889
Standard D	on:	2ndF $5 x$		9.279607271
Variance:		$\left.x^{2}\right]$		86.11111111

Variance:

Correct Data (CD):
The last entry above is an error and must be changed to 60×2
Key in
65×2
$60 x 2$ [ata]

Note: When you correct the mis-entry before pressing the [DATA key, use $C D$ key.
3. Two-Variable Statistics and Linear Regression.

In addition to the same statistical functions for Y as for X in single-variable statistics, the sum of the products of samples $\Sigma X Y$ is added in two-variable statistics.
In Linear Regression there are three important values; r, a, and b. The correlation coefficient r shows the relationship between two variables for a particular sample The value of r is between -1 and 1. If r equals -1 or 1 , all points on the correlation diagram are on a line. The further the value of r is from -1 and 1 , the less the points are massing about the line and the less reliable is the correlation. If r is more than 0 , it shows a positive correlation (Y is in proportion to X) and if r is less than 0 , it is a negative correlation (Y is inverse proportion to X).
The equation for the straight line is $Y=a+b X$. The point at which the line crosses the Y axis is a . The slope is b .
r Correlation coefficient

$$
\mathrm{r}=\frac{\mathrm{s}_{x y}}{\sqrt{\mathrm{~s}_{x x} \cdot \mathrm{~S}_{y y}}}
$$

a $a=\bar{y}-b \bar{x} \quad$ Coefficient of linear
b $\left.\mathrm{b}=\mathrm{s}_{x y}\right\} \quad$ regression equation $Y=a+b x$

$$
\left[\begin{array}{l}
\mathrm{s}_{x x}=\Sigma x^{2}-\frac{(\Sigma x)^{2}}{n} \\
\mathrm{~s}_{y y}=\Sigma y^{2}-\frac{(\Sigma y)^{2}}{n} \\
\mathrm{~s}_{x y}=\Sigma x y-\frac{\Sigma x \cdot \Sigma y}{\mathrm{n}}
\end{array}\right]
$$

$x^{\prime} \quad x^{\prime}=\frac{y-\mathrm{a}}{\mathrm{b}} \quad$ Estimated value (the value of x is estimated from that of y. .)
$y^{\prime} \quad y^{\prime}=\mathrm{a}+\mathrm{b} x \quad$ Estimated value (the value of y is estimated from that of x.)

- Data for two-variable statistic calculations are inputted by the following operations. (1) Data $(x)[x, y]$ Data (y) (Data
(2) Data $(x) \quad(x, y)$ Data $(y) \quad x$ Frequency [DaTA

Example: If we know a student's mark in mathematics, can we predict the mark in English?
The exam marks for six students chosen at random are given in the following table:
Mode: STAT, Floating decimal point system Student No.

n
1
2
3
4
5
6

Mark in Math

x
82
53
61
74
51
51

Key in: 34.26190476 . 678571429

Display
(Note: to input multiple identical samples proceed as indicated)

Mark in English

Y
79
50
87
96
73
73

The value of r of .57 indicates that the correlation is marginal. The equation for the straight line for this data is $Y=34.26+68 \mathrm{X}$.
If we had a student whose mark in mathematics was 90 , based on this analysis, what mark would the student have in English?

$$
9 0 \longdiv { 2 n d r } \quad y ^ { \prime } \quad 9 5 . 3 3 3 3 3 3 3 3
$$

If we had a student whose mark in English was 80, based on this analysis, what mark would the student have in mathematics?

$$
80 \text { 2ndrl } x^{x} \quad 67.40350877
$$

MULTIPLE FORMULA RESERVE

[^0]camp : After formula number is designated, pressing this key will produce the variable for which a value needs to place in the calculator. After all value have been inputted pressing comp results in the answer. COMP restarts calculations after the [nodr Look have been used.
$[x]$: To enter variables in a formula in the LEARN MODE. The variable symbol is displayed with the number of the variable as entered [1] [2] [3].

1. To display more than 2 answers, enter the 20015 key operation in the formula where necessary for indication.
(2) The answers will be displayed on the LOOK indicator during calculation.

2. HOW TO STORE A FORMULA:

Procedure:
(1) Set the EL-512 at the LEARN mode by depressing the 2ndf and LRN keys. Make sure that the symbol " [RNN " is displayed. (If the symbol " Sidin" is displayed depress the 2 ndF and STAT keys. Then, depress the $2 n+1$ and LRN keys.)
(When the LEARN mode is set, the 4 digits of the symbol "百" are flashing to indicate that the formula number should be entered.)
(2) Enter the formula number by depressing the formula designation key (1: , 2: 2ndf 3: or 2nd 4:). (The symbol "1" is displayed in upper part of the display to show the designated formula number.)
(3) Enter the formula.

To correct mis-operation in the course of a formula entry, press the formula desig nation key (Example: For formula 1, press the 1:) and enter the corred formula from the beginning.
(4) Depress the 2ndF and LRN keys to end the formula entry. (The symbol " [RND " disappear.)
Example 1:

$$
\begin{aligned}
& x+2 y+3 z \quad x=20 y=30 z=40 \\
& \text { Input Procedure: } 2 \text { nar LRN } 1 \text { : } \\
& {[(x)+2 x[(x)] 3[x][x] \equiv \text { [nAF LRN }}
\end{aligned}
$$

3. HOW TO USE A FORMULA:

Procedure:
(1) Make sure that the symbol "LERN" or "STRAT" is not displayed. If the symbol "LITM" or "ESTAR " is displayed, depress the [2NAF LRN or EndF STAT keys respectively.
(2) Depress the formula designation key. The symbol "罟" is displayed to show the designated formula number and the calculation is started.
In case of above example 1:
Solution:

Press	1: Display:	$[1]$	Key in:	20
Press		Key in:	30	
Press		K.	Key in:	40
Press		Knswer: 200		

 200
[1] (Enter new values for x, y, and z)
4. HOW TO CLEAR A FORMULA:

Procedure:
(1) Set the EL-512 at the LEARN mode by depressing the 2ndF and LRN keys. (When the symbol " [स्रNN " is displayed, skip this step.)
(2) To clear a formula:

Depress one of the formula designation keys. (Example: For formula 1, press the (1:)

To clear all formulas:
Depress the 1: , 2: , 2ndf 3: and 2nat 4: keys.
Example 2: MULTIPLE FORMULA RESERVE
(When 4 kinds of formula are entered simultaneously:)
[Input]
Formula 1 - Circumference and area of a circle

$$
l=2 \pi r \quad S=\pi r^{2} \quad r=1,2,3
$$

Note: The first value of the variable may be inputted directly followint the variable sign.
Input Procedure: [20d LIN 1 :

$$
\begin{aligned}
& 2 x \pi x[(x) 1[x+M \quad \Xi \\
& \text { Answer }=6.283185307 \text { (and } 1 \text { is stored in memory } \\
& \text { 2naf toox To display intermediate answer } \\
& \text { (RM } x^{2} \text { X } \pi
\end{aligned}
$$

Formula 2 - Automatic Incrementing

To solve a formula in which the variable is increased by the same amount each time, it is not necessary to place a value in the equation for each solution. Place the amount to be incremented in Memory and each time [ame is pressed the value of X will be automatically increased by the value in memory.
a. $f(x)=2 x^{2}+7 x+9 \quad x=1,2,3, \cdots$.

Procedure:

(Enter 0 x $x+0.0$ and COEE in that order to clear the memory. The step number does not count up.)

Formula 3 - Cosine Theorem
Angle Mode: DEG (Set DEG mode before inputting the first formula) $a=\sqrt{b^{2}+c^{2}-2 b c \cos \theta}$

Case A. $b=2, c=3, \theta=60^{\circ}$
Case B. $b=10, c=12, \theta=30^{\circ}$
Procedure: 2ndF 3 :

$2 \mathrm{~km} \quad 1 \mathrm{~km} \quad 2 \quad x]$
$60 \cos \equiv \square$
Case A answer $a=2.645751311$
Formula 4 - Business Application (Trade discounts)
There are many business applications for which the EL-512 is an ideal tool. For example, a series of discounts from the list price are offered. They art $35 \%, 3 \%, 2 \%$. Calculate the final price for a series of prices starting at $\$ 10$ and increasing by increments of $\$ 10$.

The equivalent discount is:
(1 -first discount) \times (1 -second discount) \times (1 -third discount)

Procedure:

$$
\begin{aligned}
& 10 \mathrm{MH} \\
& .65 \times x \text {. } 97.98 X \text { RM } \equiv X \text { Answer: } 6.1789
\end{aligned}
$$

[Solution]
Formula 1: 1: 2 come

Answer: 12.56637061 Circumferance @ $r=2(2 \pi \times 2)$

12.56637061 Area @ $r=2\left(\pi \times 2^{2}\right)$
Answer: 18.84955592 Circumferance @ $r=3$ 28.27433388 Area
@r=3
-To proceed the calculation in the same formula with different variables, just press the come key. (In the above case, the formula designation key can be also used.)

Formula 2: $\quad 0 \quad x-m$ (Clear the memory before starting the formula 2.)

Formula 3: 2 nd 3 : 10 $\begin{array}{ll}\text { 3: } & 10 \\ \text { Comen } & 12 \\ \text { comp } & 30\end{array}$

Case B
answer $\mathrm{a}=6.01281158$

Formula 4: $0 \quad x=10$
2norf 4:
Next, press comily to get the final discounted price for each increment

Retail Price	Discounted Price
$\$ 10$	$\$ 6.1789$
$\$ 20$	12.3578
$\$ 30$	18.5367
$\$ 40$	24.7156
$\$ 50$	30.8945
$\$ 60$	37.0734
$\$ 70$	43.2523
$\$ 80$	49.4312
$\$ 90$	55.6101
$\$ 100$	61.789

5. Program Steps

The maximum storage capacity of the EL-512 is 128 steps. If the number of steps is exceeded an error is encountered.
The number of steps used in the preceding examples were:
No. of Steps

1. Example 1
2. Example 2: Formula 1

Formula 2
Formula 3
Formula 4
11
14
14
21
18

Example of step

Number of step		
0	1	2

- If an error occurs in key operation during formula storage, press the c.CE key and

Supplementary 2 - Detailed Reviews designate the formula number again. Then enter the formula from the beginning.

- When the error symbol " E " is displayed depress the c.cs key to clear the error conditions.
For example: When the non-stored formula key is depressed, or when the comp key is depressed before operating the $1:$, 2: , 2natr 3: or 2nalf 4: keys.

THE KEYBOARD

OPERATING CONTROLS

There are three type of modes:

Normal calculation mode:

(The symbol " Siliili " and " LERN " are not displayed)
The mode for general arithmetic calculations, functional calculations and calculations based on the formulas stored in the formula reserve memory.
Statistical calculation mode:
(Displays " suriti ")
The mode for statistical calculations can be designated or cleared using the 2nd keys.
Learn mode:
(Displays " [ERN ")
The mode for formula storage in the formula reserve memory can be designated of cleared using the 2ndF LIRN keys.

Power on and clear/clear entry key

When this key is depressed, the calculator is turned on.

- Clear entry

Push once during a calculation and the last entry is cleared.
$123+455 \rightarrow 549$. $456 \square \rightarrow$.

- Clear

When pushed twice during operation it clears the calculator except for the memory.
Note: When the formula is designated by the $1: \sim$ 2ndF 4: in LEARN mode, the c.cE key works as follows:
(1) When the c.cE is used as clear entry key, stores the clear entry function in the memory.
(2) When the [c.cs is used as all clear key, clears the formula designated except for formula number.
(2) OFF Power off key

When this key is depressed, the calculator is turned off.2ndF 2nd function designation key
(4) Look Variable designation/intermediate result display key
$[x]$: Used to specify a variable when a calculating formula is stored in the LEARN mode. The key must be pushed before entering a variable. Specifying a variable by the $[x]$ key temporarily stops the execution of a calculation subjected to a stored mathematical formula, enabling the entry of a variable.

2ndF Look: Refer to page 49.

(5) 3: 4:

1: 2: Formula designation keys
1: 2 :
2ndrl 3: , 2ndrl 4:
Example: Refer to page 48.

Compute and learn key

compl This key is used to restart a calculation which is temporarily interrupted due to entry of a variable or a display of an intermediate result.

2ndF LRN: Set or reset the EL-512 at the LEARN mode.

(7) hyp Hyperbolic/arc hyperbolic key Example: Refer to page 25

Trigonometric/inverse trigonometric function key Example: Refer to page 24.
(9) $T A B \quad$ Display format exchange/Tabulation key

Foof: When a calculation result is displayed in the floating decimal point
system, pushing the key displays the result in the scientific notation
Foof: When a calculation result is displayed in the floating decimal point
system, pushing the key displays the result in the scientific notation system.

Pushing the key once more displays the result in the floating decimal point system again.
(10) 2ndF TTAB: Refer to page 22.
(10) $\frac{n}{\pi}$
π ! Pi/Factorial Key
π : The constant $\pi(\pi \doteqdot 3.141592654)$ is entered. Example: Refer to page 24.
2nof [n!: Calculates the factorial of the displayed number. Factorial of $n(n!)=n \cdot(n-1) \cdot(n-2) \cdot \ldots . . .2 \cdot 1$
(11) - D.MS

Degree/minute/second \leftrightarrow Decimal degrees conversion key Example: Refer to page 28.
(12) $\frac{e^{x}}{\ln }$

Natural logarithm/antilogarithm key
In): Used to obtain the logarithm base e ($\mathrm{e} \fallingdotseq 2.718281828$). Example: Refer to page 26.
2ndf (ex: Calculates the antilogarithm base e of the displayed number. Example: Refer to page 27.
10^{x}
100
Common logarithm/antilogarithm key
log: Used to obtain the logarithm with the base of 10. Example: Refer to page 26.

2ndF $10 x$: Calculates the antilogarithm with the base of 10.

 Example: Refer to page 27.4) $\frac{1}{10}$
5) Kn Storage memory/exchange key

Kn: Example: Refer to page 36.
2201f : Used to exchange the number being displayed with the number stored in the working register. $(x \leftrightarrow y)$
(15) STAAT Right shift/statistical calculation mode key
\rightarrow Example $\quad \Rightarrow \quad$ Key in \quad Display

2ndif STAT: Statistical program will be activated.
When the calculator is set to the statistical calculation mode through this key, the symbol " siritiri " appears, and at the same time the entire machine is cleared. Meanwhile, in the statistical calculation mode the (1, 1, $x+M, ~[M$ and $M+$ keys work as the $n, \Sigma x, \Sigma y$ (x, y) and Data keys, respectively. And pushing these keys immediately
 and $C D$ keys.
(16) STO

Enter exponent and store key
EXP: Example: Refer to page 23.
2nuf (STO: Example; Refer to page 36.
(17) $x \sqrt{y}$
y^{x} $y^{x} / \sqrt[x]{y}$ key
y^{x} : Raises a number to a power.
[2ndF $\sqrt{x} \sqrt{y}$: Calculates the X th root of Y.
Example: Refer to page 25 and 26.

Square root/cube root key
(1): Calculates the square root of the number displayed. Example: Refer to page 26.
[2nd $3 \sqrt{3}$: Calculates the cube root of the number displayed. Example: Refer to page 26.

Square/reciprocal key

x^{2} : Calculates a square of the number displayed.
Example: Refer to page 25.
2math $1 / x$: Calculates the reciprocal of the number displayed. Example: Refer to page 27.
(20) ${ }^{\rightarrow r \theta}$ Open parenthesis/rectangular coordinate \rightarrow polar coordinate conversion/statisti$n \sum x y$ cal calculation key
(1): Used to open parenthesis Example: Refer to page 13.
2ndF Pro : Converts rectangular coordinate into polar coordinate. Example: Refer to page 29.

- When the statistical mode is set,
n): Displays the number of samples entered.

2ratin : Used to obtain the sum of the products of data x and y in two variable statistical calculation.
(21) $\begin{gathered}-x y \\ 1\end{gathered}$

Close parenthesis/polar coordinate \rightarrow rectangular coordinate conversion/statistil $\sum x \Sigma x^{2}$ cal calculation key
1): Used to close parenthesis.

Example: Refer to page 13.
2ndF- $-x y$: Converts polar coordinate into rectangular coordinate.
Example: Refer to page 30.

- When the statistical calculations mode is set,
Σx : Used to obtain the sum of data (Σx).
2ndf E $E x^{2}$: Used to obtain the sum of squares of data (Data: x).
(22) $x-M$

Memory-in/ $\Sigma y \Sigma y^{2}$ key
$\Sigma y \Sigma y^{2} x=$ Clears the number in the memory and then store the number being displayed in the memory.
To clear the memory depress the acol key followed by the key.

- When the statistical mode is set,
Σy : Used to obtain the sum of data (Data: y)
[2ndre $E y^{2}$: Used to obtain the sum of squares of data (Data: y)
(23) RM Recall memory/statistical calculation key
(x, y)
RM : Displays the contents of the memory. The contents of the memory remain unchanged after this key operation.
- When the statistical mode is set,
$[x, y):$ Used to distinguish data x and data y in the two-variable statistical calculation.
Example: Refer to page 46.
(24) M+ Memory plus/DATA CD key
(M-1: Used to add the number being displayed or a calculated result to the
contents of the memory.
When subtracting a number from the memory, depress the $t /$ and $\sqrt{\mathrm{Am}} \boldsymbol{\mathrm { H }}$ keys in this order.
- When the statistical mode is set

DATA: Used to enter the data (numbers).
2ndF CD: Used to correct the mis-entry. (delete function).
(25) $\uparrow \rightarrow \square \quad$ Arithmetic functions/Hexadecimal \leftrightarrow decimal notation conversions keys
Depressed for addition, subtraction, multiplication and division. 2ndr - HEX : Converts the number displayed in base 10 into a number in base 16. 2ndF -Dec : Converts the number displayed in base 16 into a number in base 10E Equals key Completes four arithmetic calculations $(+,-, x, \div), \sqrt[x]{y}$ and Y^{x} calculations$x^{\prime}(A)$
(27)

0 ~ 9 Numeral and statistical calculations keys Used to enter numbers.

Hexadecimal entry:
$0 \sim 9 \rightarrow 0 \sim 9$

- When the statistical mode is set,
x^{\prime} : Used to obtain the estimated value of x.
r : Used to obtain the correlation coefficient in two-variable statistical calculation.
(a): Used to obtain the constant a of the linear regression equation $y=$ $a+b x$.
[b : Used to obtain the coefficient b of the linear regression equation $y=a+b x$.
\bar{x} : Used to obtain the mean value of data (Data: x)
$s x$: Used to obtain the standard deviation ($s x$) of the sample of data (x).
σx : Used to obtain the standard deviation (σx) of the population of data (x).
\bar{y} : Used to obtain the mean value of data (Data: y)

Sy: Used to obtain the standard deviation (sy) of the sample of data (y).
σy : Used to obtain the standard deviation (σy) of the population of data (y).

Change sign and statistical calculation key
t/- : Changes the sign of the number displayed from a positive to a negative or vice versa.
y^{\prime} : When the calculator is set at the statistical calculation mode: Used to obtain the estimated value of y.
(29) DRG Decimal point and Degree/Radian/Grad selection key
$\square:$ Example $12.3 \rightarrow 102$
$0.7 \rightarrow \bullet 7$
2nof [RG: Used for calculation of trigonometric, inverse trigonometric and coordinate conversion. The 2 ndif $\mathbb{D R G}$ keys change the angular mode.

(Press 2 2 NHF)
$E x$. DEG \rightarrow GRAD: Depress the 2 nadf keys twice.
"DEG" mode - Entires and answers are in decimal degrees.
"RAD" mode - Entries and answers are in radians.
"RAD" mode - Entries and answers are in radians. $\left(100^{9}=90^{\circ}=\frac{\pi}{2}\right)$.
(1) Display format

Battery indicator

Mantissa
Exponent
(Floating decimal system)
(Scientific notation system)
-: Minus symbol
Indicates that the number in the display following the " - " is a negative.
[⿴囗 Memory symbol
Appears when a number is stored in the memory.
E: Error symbol
Appears when an overflow or an error is detected.

- Battery indicator

The battery indicator is a grey dot located at the left side of the display. When this dot is not on, the batteries must be replaced.
2ndF: 2nd function designation symbol
Appears when the $2 n d$ function is designated.
HYP: Hyperbolic function designation symbol Appears when hyperbolic function is designated.
DEG: Degree mode symbol
Appears when the degree mode is designated.

RAD: Radian mode symbol
Appears when the radian mode is designated.
GRAD: Grad mode symbol
Appears when the grad mode is designated.
EERN : LEARN mode symbol Appears when learn mode is set.
LOOK: In termediate result indication symbol
Appears when the L206F keys are depressed in the learn mode or when an answer is displayed during calculation.

STiATI: Statistical calculation mode symbol
Appears when statistical calculation mode is set.
(): Parenthesis symbol
Appears when a calculation with parenthesis is performed by depressing the (1) key.

HEX: Hexadecimal symbol
Appears when an answer in hexadecimal notation is displayed.

FI : Variable input symbol

Appears when the $[(x)]$ key is pressed in the LEARN mode or when the entry of a variable is required while a calculation is executed according to a stored mathematical formula. The number in brackets shows where a variable concerned standards in the list of variables, randing from " 1 " to " 9 " and "A"~"F".
For variable No. 16 and the subsequent, the symbol "'" is displayed instead of a numeral.
I. Formula number indicator

Appears when formula reserve function is used
3. Display system

This machine displays a calculation result (x), if it is with in the following range, in the floating decimal point system.
$0.000000001 \leqq|x| \leqq 9999999999$

And otherwise the machine displays $|x|$ in the scientific notation system.
(When the number of decimal digits is fixed at 0 to 9 , a calculation result is displayed, even if it is below 0.000000001 , in the floating decimal point system.) However, a calculation result within the above range is also capable of being displayed in the scientific notation system by pressing the [FWE key.
Ex. (1) $1111111111 \times 5 \square 5555555555$.
F- E $\rightarrow \underbrace{5.5555555} 09$
Mantissa Exponen 8 digits 2 digits
Ex. (2)

$$
\begin{aligned}
& 5 \text { EXP } 6 \text { ษ } \div 3 \square 0.000001667 \text { (1) } \\
& \text { F F EE } \rightarrow \text { 1.6666666-06 (2) } \\
& \text { F } \sim \text { E } \rightarrow 0.000001667
\end{aligned}
$$

The machine carries out all calculations in exponent form ($\mathrm{A} \times 10^{\mathrm{B}}$) and computes the mantissa of a result up to 12 digits. (In the above example (2)),

$$
\underbrace{1.66666666666} \times 10^{-6}
$$

12 digits

And the mantissa is displayed after rounded at the 11th place (Floating decimal system) or at a decimal place one lower than the specified.
(1) 0.00

End of supplementary 2

ERRORS

In the case of an error, the display will show " E ". An error will be caused by a calculations or instruction beyond the capacity of the machine. An error can be cleared by the [c.CE key. There are three types of error conditions: overflow, underflow, and incorrect operation.

Supplementary 3 - Error Conditions

1. An overflow error occurs when the absolute value of a calculation, or the result in memory is greater than $9.999999999 \times 10^{99}$. (Overflow error)
2. The underflow error occurs when the value of a calculation is less than 1×10^{-99}. this case, the calculator assumes the value is 0 and the calculation may continue instead of registering an error and stopping the calculation.
3. When a number is divided by 0 (zero) (Ex. $5 \div 0 \square$)

When the pending operation exceeds 8 levels or when or more in 1 level.

For scientific functions an error occurs when the calculations exceed the following ranges:
For the errors in formula reserve and hexadecimal \longleftrightarrow decimal conversion, see each section.

CALCULATION RANGE

- The entry and four (4) arithmetic calculations

Entry, 1 st operand, 2 nd operand: $\pm 1 \times 10^{-99} \sim \pm 9.999999999 \times 10^{99}$ and 0
Calculated result: $\pm 1 \times 10^{-99} \sim \pm 9.9999999 \times 10^{99}$ and 0
Note: When the absolute value of a calculation in less than 1×10^{-99}, the calculator assumes the value is 0 .
Scientific and special functions:

Functions		Dynamic range
$\sin x$	DEG:	$\|x\|<1 \times 10^{10}$
$\cos x$	RAD:	$\|x\|<\frac{\pi}{180} \times 10^{10}$
$\tan x$	GRAD:	$\|x\|<\frac{10}{9} \times 10^{10}$

Functions	Dynamic range
$\sin x$ $\cos x$ $\tan x$	In $\tan x$, however, the following cases are excluded. DEG: $\|x\|=90(2 n-1)$ RAD: $\|x\|=\frac{\pi}{2}(2 n-1) \quad n=$ integer GRAD: $\|x\|=100(2 n-1)$
$\begin{aligned} & \sin ^{-1} x \\ & \cos ^{-1} x \end{aligned}$	$-1 \leqq x \leqq 1$
$\tan ^{-1} x$	$\|x\|<1 \times 10^{100}$
$\begin{aligned} & \hline \operatorname{In} x \\ & \log x \end{aligned}$	$1 \times 10^{-99} \leqq x<1 \times 10^{100}$
e^{x}	$-1 \times 10^{100}<x \leqq 230.2585092$
10^{x}	$-1 \times 10^{100}<x<100$

Functions	Dynamic range
y^{x}	- $y>0$: $\quad-1 \times 10^{100}<x \log y<100$ - $y=0: \quad x \geqq 0$ - $y<0$: x integer $-1 \times 10^{100}<x \log \|y\|<100$
$\sqrt[x]{y}$	$\begin{array}{ll} y>0: & -1 \times 10^{100}<\frac{1}{x} \log y<100, x \neq 0 \\ y=0: & x>0 \\ y<0: & x: \text { integer } \quad(x \neq 0) \\ & -1 \times 10^{100}<x \log \|y\|<100 \end{array}$
$\sqrt[3]{x}$	$\|x\|<1 \times 10^{100}$
$\sinh x$ $\cosh x$ $\tanh x$	$-227.9559242 \leqq x \leqq 230.2585092$
$\sinh ^{-1} x$	$\|x\|<1 \times 10^{50}$

Functions	Dynamic range
$\cosh ^{-1} x$	$1 \leqq x<1 \times 10^{50}$
$\tanh ^{-1} x$	$\|x\|<1$
\sqrt{x}	$0 \leqq x<1 \times 10^{100}$
x^{2}	$\|x\|<1 \times 10^{50}$
$\frac{1}{x}$	$\|x\|<1 \times 10^{100}$
$\mathrm{n}!$	$x \neq 0$
\rightarrow DEG	
\rightarrow DMS	$0 \leqq n \leqq 69$
$x, y \rightarrow r, \theta$	$\|x\|<1 \times 10^{100}$
	$\|x\|<1 \times 10^{50}$
	$\|y\|<1 \times 10^{50}$

Functions		Dynamic range	
$r, \theta \rightarrow x, y$		$0 \leqq r<1 \times 10^{100}$	
\rightarrow HEX		-9999999999	x : integer
\rightarrow DEC		$\begin{aligned} & 0 \leqq x \leqq 2540 B E 3 F F \\ & \text { FDABF } 41 \text { C01 } \leqq x \leqq \text { FFFFFFFFFF } \end{aligned}$	x : integer
Statistical calculation	$\begin{aligned} & \text { Data } \\ & \text { CD } \end{aligned}$	$\begin{aligned} & \|x\|<1 \times 10^{50} \\ & \|y\|<1 \times 10^{50} \\ & \|\Sigma x\|<1 \times 10^{100} \\ & \Sigma x^{2}<1 \times 10^{100} \\ & \|\Sigma y\|<1 \times 10^{100} \\ & \Sigma y^{2}<1 \times 10^{100} \\ & \|\Sigma x y\|<1 \times 10^{100} \\ & \|n\|<1 \times 10^{100} \end{aligned}$	
	\bar{x}	$n \neq 0$	

Functions		Dynamic ran
Statistical calculation	S x	$\begin{aligned} & n \neq 1 \\ & 0 \leqq \frac{\Sigma x^{2}-n \bar{x}^{2}}{n-1}<1 \times 10^{100} \end{aligned}$
	σx	$\begin{aligned} & n \neq 0 \\ & 0 \leqq \frac{\Sigma x^{2}-n \bar{x}^{2}}{n}<1 \times 10^{100} \end{aligned}$
	\bar{y}	$n \neq 0$
	Sy	$\begin{aligned} & n \neq 1 \\ & 0 \leqq \frac{\Sigma y^{2}-n \bar{y}^{2}}{n-1}<1 \times 10^{100} \end{aligned}$
	σy	$\begin{aligned} & n \neq 0 \\ & 0 \leqq \frac{\Sigma y^{2}-n \bar{y}^{2}}{n}<1 \times 10^{100} \end{aligned}$

Functions		Dynamic range
Statistical calculation	r	$\begin{aligned} & n \neq 0 \\ & 0<1\left(\Sigma x^{2}-n \bar{x}^{2}\right) \cdot\left(\Sigma y^{2}-n \bar{y}^{2}\right) \mid<1 \times 10^{100} \\ & \left\|\Sigma x y-\frac{\Sigma x \cdot \Sigma y}{n}\right\|<1 \times 10^{100} \\ & \left\|\frac{\Sigma x y-\frac{\Sigma x \cdot \Sigma y}{n}}{\sqrt{\left(\Sigma x^{2}-n \bar{x}^{2}\right) \cdot\left(\Sigma y^{2}-n \bar{y}^{2}\right)}}\right\|<1 \times 10^{100} \end{aligned}$
	b	$\begin{aligned} & n \neq 0 \\ & 0<\left\|\Sigma x^{2}-n \bar{x}^{2}\right\|<1 \times 10^{100} \\ & \left\|\Sigma x y-\frac{\Sigma x \cdot \Sigma y}{n}\right\|<1 \times 10^{100} \\ & \left\|\frac{\Sigma x y-\frac{\Sigma x \cdot \Sigma y}{n}}{\Sigma x^{2}-n \bar{x}^{2}}\right\|<1 \times 10^{100} \end{aligned}$

Functions		Dynamic range
Statistical calculation	a	a is the same condition as b, and $\|\bar{y}-b \bar{x}\|<1 \times 10^{100}$
	y^{\prime}	$\|a+b x\|<1 \times 10^{100}$
	x^{\prime}	$\left\|\frac{y-a}{b}\right\|<1 \times 10^{100}$

Note: As a rule, the error of functional calculations is less than ± 1 at the lowest digit of a displayed numerical value (at the lowest digit of mantissa in the case of scientific notation system) within the above calculation range.
In the calculation of $\sinh x, \tanh x, \sinh ^{-1} x$ and $\tanh ^{-1} x, x$ is a singular point when it is 0 (zero). Near this point the error is accumulated, reducing the accuracy.

SPECIFICATIONS

Model:
Display capacity:
Symbols and indicators:

Calculations:

Memory:
Formula reserve memory:

EL-512
Floating decimal point display: 10 digits or
Exponent display: Mantissa 8 digits Exponent 2 digits
Minus symbol appears both in mantissa and exponents portion, etc. See "DISPLAY"
Four arithmetic calculations, constant calculation, memory calculation, degree/minute/second \longleftrightarrow decimal degrees conversion, trigonometric function, inverse trigonometric function, logarithmic function, exponential, square and power, cube root, X th root of Y $(\sqrt[x]{y})$, square root, reciprocal, factorial, coordinates conversion, statistical calculation, hyperbolic and inverse hyperbolic functions, hexadecimal and decimal notations conversion, etc.
9 storage memories
1 independently accessible memory
128 steps (can be divided into a maximum of 4 areas), LEARN system (for formula storage during calculation).

Component:	LSI etc.
Display:	Liquid crystal (FEM type)
Power supply:	Silver oxide battery (Type: G-13) x 2.
Operating time:	Alkaline manganese battery (LR-44): Approx. 1,000 hours or Silver oxide battery (G13): Approx. 3,000 hours, Display 555555 , at the ambient temperature: $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$. The operating time slightly changes depending on the type of battery or the way of use.
Ambient temperature:	$0^{\circ} \mathrm{C} \sim 40^{\circ} \mathrm{C}\left(32^{\circ} \sim 104^{\circ} \mathrm{F}\right)$
Power consumption:	3 V ‥ (DC) : 0.0002 W
Dimensions:	$\begin{aligned} & 69(W) \times 128(D) \times 8.5(H) \mathrm{mm} \\ & 2-23 / 32^{\prime \prime}(W) \times 5-1 / 32^{\prime \prime}(D) \times 11 / 32^{\prime \prime}(H) \end{aligned}$
Weight:	Approx. 70 g ($0.15 \mathrm{lbs}$.)
Accessories:	Alkaline manganese battery (LR-44) (Built-in) $\times 2$, wallet and instruction manual

End of Supplementary 3

BATTERY REPLACEMENT

When the battery indicator is out, replace the batteries*.

1. Turn off the calculator.
2. Remove the screws from the back cover with a small screw driver (Fig. 1).
3. Replace the batteries. (Fig. 2) (+ side must be up)
4. Hook the tabs of the back cover into the slits of the calculator proper. (Fig. 3)
5. Push the back cover in slightly while replacing the screws.
6. After the replacement, press the OFF and C.CE keys in this order to clear the calculator.

When the batteries are correctly installed " • deg 0. ." will be displayed. (If the display shows nothing or a meaningless symbol, or the keys become inoperative, remove the batteries and install them again. Press the off and [c.CE keys in this order and check the display again.)
Note: Wipe off the surface of the new batteries with dry cloth and then install the batteries as shown in Fig. 2.

- Always replace both of the batteries at the same time.
* Battery: Alkaline manganese battery (Type: LR-44) $\times 2$ or silver oxide battery . YOUR OWN APPLICATION (Type: G13) $\times 2$ (Eveready model S76, Mallory model MS76 and Ray-O-Vac model RS76 or equivalent should be used.)
Batteries may be obtained where you purchased your calculator or at most retail outlets for calculators, watches, or cameras.

Fig. 2

SERVICE CENTER ADDRESS

SHARP ELECTRONICS CORPORATION SHARP CONSUMER FACTORY SERVICE CENTER 430 East Plainfield Road Countryside, III. 60525 (312) 242-0870

SHARP ELECTRONICS CORPORATION

```
CORPOFATE HEADOUARTERS ANTO UXEGUTTVEDFFICES
            10 Shalp Flaza Faramus, New Jersey 07652. Phone: 2011265,5600
```


[^0]: 1. Basic Programming

 Mathematical formulas can be stored by using the LEARN MODE. Capacity is 128 steps. Formulas can be recalled at any time and they are protected by Memory Saft Guard.

 ## MULTIPLE FORMULA RESERVE KEYS:

 EL-512 has the formula reserve memory capacity of 128 steps which can be divided into a maximum of 4 areas for formula storage. Therefore, 4 formulas can be stored.
 When the number of steps exceeds 128 , the error is occurred and the error symbol " E is displayed. To clear the error depress the c.cel key
 The special keys to be used in this mode are:
 2ndF LRM : Used to begin or end the mode for entering formulas.
 " [RNN " indicator is displayed.
 1: , 2:
 2ndF 3: 2ndF 4: : Used to designate a formula number.
 Pressing the key executes the calculation according to a formul stored.

